SIEMENS 4³⁴⁵

Acvatix™

2-port seat valves PN16 with VVF45.. flanged connection

- Nodular cast iron EN-GJS-400-15 valve body
- DN 50...150
- k_{vs} 19...300 m³/h
- Can be equipped with SKB..- or SKC..- electrohydraulic actuators

Use

For use in district heating, heating, ventilating, and air conditioning systems as a control or safety shutoff valve

For open and closed circuits (mind "Cavitation", refer to page 5).

Type summary

Product number	DN	k _{vs} [m ³ /h]	S _v
VVF45.49	50	19	> 50
VVF45.50	50	31	
VVF45.65	65	49	
VVF45.80	80	78	
VVF45.90	100	124	> 100
VVF45.91	125	200	
VVF45.92	150	300	

DN = Nominal size

 k_{vs} = Nominal flow rate of cold water (5...30 °C) through the fully open valve (H₁₀₀) by a differential pressure of 100 kPa (1 bar)

 $S_v = Rangeability k_{vs} / k_{vr}$

Smallest k_v value, at which the flow characteristic tolerances can still be maintained, by a differential pressure of 100 kPa (1 bar)

High performance versions

Product number	Type suffix	Description	Examples	
VVF454	4	Sealing gland with PTFE sleeve for temperatures up to 180 °C	VVF45.65 4	

Accessories

Product number	Description
ASZ6.5	Electric stem heating element, AC 24 V / 30 W, required for media below 0 °C

Ordering

Example:	Product number	Stock number	Designation	Quantity
	VVF45.50	VVF45.50	2-port seat valve PN16 with flanged connection	1

Delivery

Valves, actuators and accessories are packed and supplied separately. The valves are supplied without counter-flanges and without flange gaskets.

Spare parts, Rev. no.

See overview, page 11.

Equipment combinations

Valves	_	Actuators			
_		SK	В	SK	C
_	H ₁₀₀	Δp_{max}	Δp_s	Δp_{max}	Δp_s
	[mm]		[k	Pa]	
VVF45.49	20	1200	1600		
VVF45.50	20	1200	1600		
VVF45.65				1000	
VVF45.80				700	
VVF45.90	40			450	1600
VVF45.91				300	
VVF45.92				200	

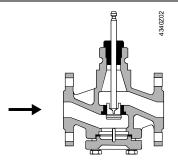
 H_{100} = Nominal stroke

 Δp_{max} = Maximum permissible differential pressure across the valve, valid for the entire actuating range of the motorized valve

 Δp_s = Maximum permissible differential pressure at which the motorised valve will close securely against the pressure (close off pressure).

Actuator overview

Product number	Actuator type	Operating voltage	Positioning signal	Spring return	Positioning time	Positioning force	Data sheet
SKB32.50 SKB32.51		AC 230 V		- Yes			
SKB82.50 SKB82.51	Electro- hydraulic	40.0414	3-position	- Yes	120 s	2800 N	N4564
SKB60 SKB62		AC 24 V	DC 010 V 1)	- Yes			
SKC32.60 SKC32.61		AC 230 V		- Yes			
SKC82.60 SKC82.61	Electro- hydraulic	100411	3-position	- Yes	120 s	2800 N	N4566
SKC60 SKC62		AC 24 V	DC 010 V ¹⁾	- Yes			


 $^{^{1)}}$ or DC 4...20 mA or 0...1000 Ω

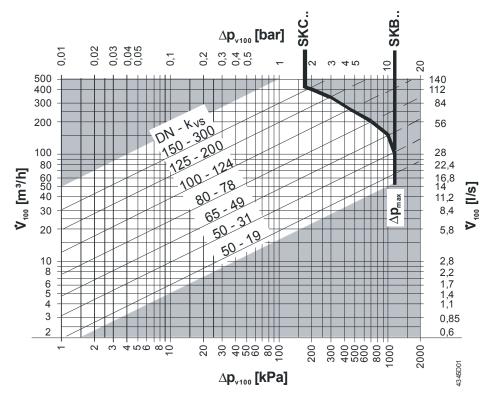
Pneumatic actuators

Do not use VVF45.. with pneumatic actuators.

Technical design / mechanical design

Valve cross section

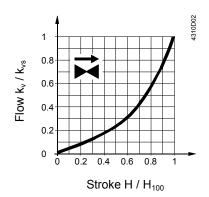
For all nominal sizes, a guided slot plug is used that is directly connected to the valve stem.


The seat is screwed to the valve body with the aid of special gland material.

Schematic representation, design variations are possible.

The two-port seat valve does not become a three-port valve by removing the blank flange!

Flow diagram

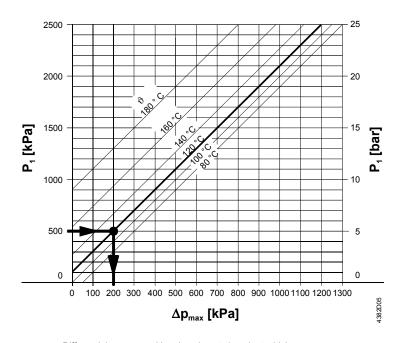

 Δp_{max} = Maximum permissible differential pressure across the valve, valid for the entire actuating range of the motorised valve

 Δp_{v100} = Differential pressure across the fully open valve and the valve's control path by a volume flow

 \dot{V}_{100} = Volume flow through the fully open valve (H₁₀₀)

100 kPa = 1 bar \approx 10 mWC 1 m³/h = 0.278 l/s water at 20 °C

Valve flow characteristic


 $\begin{array}{ccc} 0...30~\% & \rightarrow & linear \\ 30...100~\% & \rightarrow & equal~percentage \\ & & n_{gl} = 3~as~per~VDI~/~VDE~2173 \end{array}$

Cavitation

Cavitation accelerates wear on the valve plug and seat, and also results in undesirable noise. Cavitation can be avoided by not exceeding the differential pressure shown in the "Flow diagram" on page 4, and by adhering to the static pressures shown below.

Note on chilled water

To avoid cavitation in chilled water circuits ensure sufficient counter pressure at valve outlet, e.g. by a throttling valve after the heat exchanger. Select the pressure drop across the valve at maximum according to the 80 °C curve in the flow diagram below.

 Δp_{max} = Differential pressure with valve almost closed, at which cavitation can largely be avoided

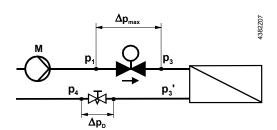
p₁ = Static pressure at inletp₃ = Static pressure at outlet

M = Pump

ϑ = Water temperature

 $\begin{array}{c|c} & p_1 & p_3 \\ \hline M & & \\ & \Delta p_{max} & \\ \end{array}$

High temperature hot water example:


Pressure p₁ at valve inlet: 500 kPa (5 bar)

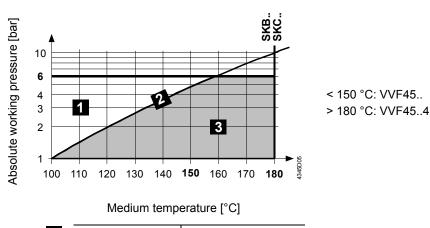
Water temperature: 120 °C

From the diagram above, it will be seen that with the valve almost closed, the maximum permissible differential pressure Δp_{max} is 200 kPa (2 bar).

Chilled water example:

Spring water cooling as an example of avoiding cavitation:

Working pressure and medium temperature


Fluids

Working pressure and medium temperature staged as per ISO 7005

Current local legislation must be observed.

Saturated steam Superheated steam

1	wet steam	avoid	
2	saturated steam		
3	superheated steam	permissible range of use	

Recommendation

For saturated steam and superheated steam the differential pressure Δp_{max} across the valve should be close to the critical pressure ratio.

Pressure ratio =
$$\frac{p_1 - p_3}{p_1} \cdot 100\%$$

p₁ = absolute pressure before valve in kPa
 p₃ = absolute pressure after valve in kPa

Calculation of the k_{vs} value for steam

Subcritical range

$$\frac{p_{_1}-p_{_3}}{p_{_1}}\cdot 100\% < 42\%$$

Pressure ratio < 42% subcritical

$$k_{vs} = 4.4 \cdot \frac{\dot{m}}{\sqrt{p_3 \cdot (p_1 - p_3)}} \cdot k$$

Supercritical range

$$\frac{p_{_1}-p_{_3}}{P_{_4}}\cdot 100\% \geq 42\%$$

Pressure ratio \geq 42% supercritical (not recommended)

$$k_{_{vs}} = 8.8 \cdot \frac{\dot{m}}{p_{_{1}}} \cdot k$$

m = steam quantity in kg/h

k = factor for superheating of steam = $1 + 0.0012 \cdot \Delta T$ (k = 1 for saturated steam)

 ΔT = temperature differential in K between saturated steam and superheated steam

Example

saturated steam 143.6 °C given

> = 400 kPa (4 bar) p_1 ṁ = 1400 kg/h

m = 1400 kg/h= 30 % = 42 % pressure ratio pressure ratio (supercritical permitted)

required k_{vs}, valve type k_{vs}, valve type

 $p_3 = p_1 - \frac{30 \cdot p_1}{100}$ procedure

 $p_3 = 400 - \frac{30 \cdot 400}{100} = 280 \text{ kPa (2.8bar)}$

 $k_{vs} = 4.4 \cdot \frac{1400}{\sqrt{280 \cdot (400 - 280)}} \cdot 1 = 33.6 \text{ m}^3 / \text{h}$

selected $k_{vs} = 49 \text{ m}^3/\text{h} \Rightarrow \text{VVF45.654}$ $k_{vs} = 31 \text{ m}^3/\text{h} \Rightarrow VVF45.504$

 p_1

saturated steam 143.6 °C

= 400 kPa (4 bar)

 $k_{vs} = 8.8 \cdot \frac{1400}{400} \cdot 1 = 30.8 \text{ m}^3 / \text{h}$

Notes

Engineering

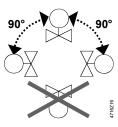
We recommend installation in the return pipe, as the temperatures in this pipe are lower for applications in heating systems, which in turn, extends the stem sealing gland's life.

In open circuits the valve plug may seize as the result of scale deposits. In these applications, only the most powerful SKB.. or SKC.. actuators should be used. Further the valve should be exercised at regular intervals (two to three times per week). A strainer MUST be fitted at the valve inlet

Ensure cavitation free flow (refer to page 5).

To ensure the reliability of the valve, we recommend the fitting of a strainer at the valve inlet even in closed circuits.

For media below 0 °C, use the electric ASZ6.5 stem heating element to prevent the valve stem from freezing in the sealing gland. For safety reasons, the stem heating element has been designed for AC 24 V / 30 W operating voltage.


The use of these valves for steam is subject to specific parameters: Observe diagram for steam on page 6 and "Technical data" on page 9!

Mounting

Both valve and actuator can easily be assembled at the mounting location. Neither special tools nor adjustments are required.

The valve is supplied with Mounting Instructions 74 319 0509 0.

Orientation

Direction of flow

When mounting, pay attention to the valve's flow direction symbol \rightarrow .

Commissioning

Commission the valve only if the actuator has been mounted correctly.

Valve stem retracts: valve opens = increasing flow Valve stem extends: valve closes = decreasing flow

Maintenance

VVF45.. valves require no maintenance.

Warning

When doing service work on the valve / actuator:

- Deactivate the pump and turn off the power supply
- · Close the shutoff valves
- Fully reduce the pressure in the piping system and allow pipes to completely cool down

If necessary, disconnect the electrical wires.

Before putting the valve into operation again, make certain the actuator is correctly fitted.

Stem sealing gland

The glands can be exchanged without removing the valve, provided the pipes are depressurized and cooled off and the stem surface is unharmed.

If the stem is damaged in the gland range, replace the entire stem-plug-unit. Contact your local office or branch.

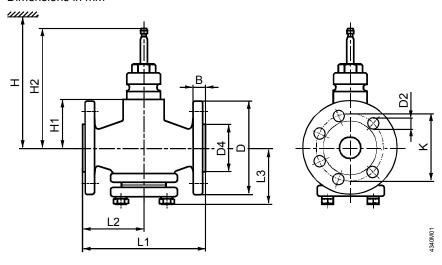
Disposal

Before disposal the valve must be dismantled and separated into its various constituent materials.

Legislation may demand special handling of certain components, or it may be sensible from an ecological point of view.

Current local legislation must be observed.

Warranty


The technical data given for these applications is valid only in conjunction with the Siemens actuators as detailed under "Equipment combinations", page 2. All terms of the warranty will be invalidated by the use of actuators from other manufacturers.

Technical data

Functional data	PN class		PN 16 to ISO 7268		
	Working pressure		to ISO 7005 within the permissible medium		
			temperature range according to the diagram		
			on page 6		
	Flow characteristic • 03	0 %	• linear		
	• 30	100 %	 equal percentage; n_{gl} = 3 to VDI / VDE 2173 		
	Leakage rate		00.02 % of k _{vs} value to DIN EN 1349		
	Permissible media: water		cooling water, chilled water, low temperature		
			hot water, high temperature hot water, water		
			with anti-freeze;		
	la viva a		recommendation: water treatment to VDI 2035		
	brine				
	steam		saturated steam, super-heated steam		
	hoot t	anafar aila	dryness at inlet minimum 0.98		
	Medium temperature 1)	ansfer oils	(use only valves with suffix 4)		
	water, brine ²⁾	\/\/E45	-10150 °C		
	water, brille	VVF454			
	saturated steam		≤ 180 °C ≤ 600kPa (6 bar) abs		
	superheated steam		≤ 180 °C ≤ 600kPa (6 bar) abs		
	capomicated eteam	* * * * * * * * * * * * * * * * * * * *	permissible temperature and pressure range		
			according to the diagram on page 6		
	heat transfer oils	VVF454	≤ 180 °C (use only valves with suffix 4)		
	Rangeability S _v		DN 50150: >100 (VVF45.49: > 50)		
	Nominal stroke		DN 50: 20 mm		
			DN 65150: 40 mm		
Industry standards	Pressure Equipment Direct	ive	PED 97/23/EC		
	Pressure Accessories		as per article 1, section 2.1.4		
	Fluid group 2: • DN 50		 without CE-marking as per article 3, 		
			section 3 (sound engineering practice)		
	• DN 65	125	 category I, with CE-marking 		
	• DN 15	0	 category II, with CE-marking, 		
			test authority number 0036		
	Environmental compatibility	1	ISO 14001 (Environment)		
			ISO 9001 (Quality)		
			SN 36350 (Environmentally compatible		
			products)		
			RL 2002/95/EG (RoHS)		
Materials	Valve body		nodular cast iron EN-GJS-400-15		
	Stem		stainless steel		
	Plug, seat		stainless steel		
	Sealing gland		standard version: brass, silicon-free special version: stainless steel		
	Gland materials		standard version: EPDM O-rings, silicon-free		
	Giariu materiais		special version:		
			VVF454: PTFE sleeves		
Dimensions / Weight	Refer to "Dimensions", pag	e 10	V VI 454. I IFE SICEVES		
Zimonolono / Wolgin	Flange connections	<u> </u>	to ISO 7005		
	1) For 150180 °C use special v				

For 150...180 °C use special versions with type suffix 4.
Electric stem heating element ASZ6.5 required for media below 0 °C.

Dimensions in mm

Product number	DN	В	D	D2	D4	K	L1	L2	L3	H1	H2	ı	1	ر kg
		_	Ø	Ø	Ø		_					SKB	SKC	 [kg]
VVF45.49	50		405		00	405	000	445	00	00	400.5	. 074		45
VVF45.50	50	20	165	19 (4x)	99	125	230	115	96	96	192.5	> 671		15
VVF45.65	65		185		118	145	290	145	126	114	230.5		> 689	23.5
VVF45.80	80	22	200		132	160	310	155	148	126	242.5		> 701	30
VVF45.90	100	24	220	19 (8x)	156	180	350	175	165	146	262.5		> 721	39
VVF45.91	125	00	250		184	210	400	200	184	163	279.5		> 738	59.5
VVF45.92	150	26	285	23 (8x)	211	240	480	240	210	186	302.5		> 761	82

DN = Nominal size

H = Total actuator height plus minimum distance to the wall or the ceiling for mounting, connection, operation, maintenance etc.

H1 = Dimension from the pipe centre to install the actuator (upper edge)

H2 = Valve in the «Closed» position means that the valve stem is fully extended

Order numbers for spare parts

	Sealir	ng gland	Set
	4340204	4340203	Plug with stem, circlip, sealing
Product number	VVF45	VVF454	VVF45, VVF454
VVF45.49	4 679 5629 0	4 679 5630 0	74 676 0058 0
VVF45.49 VVF45.50	4 679 5629 0 4 679 5629 0	4 679 5630 0 4 679 5630 0	·
			74 676 0058 0
VVF45.50	4 679 5629 0	4 679 5630 0	74 676 0058 0 74 676 0059 0
VVF45.50 VVF45.65	4 679 5629 0 4 679 5629 0	4 679 5630 0 4 679 5630 0	74 676 0058 0 74 676 0059 0 74 676 0048 0
VVF45.50 VVF45.65 VVF45.80	4 679 5629 0 4 679 5629 0 4 679 5629 0	4 679 5630 0 4 679 5630 0 4 679 5630 0	74 676 0058 0 74 676 0059 0 74 676 0048 0 74 676 0049 0

Revision numbers

Product number	Valid from	Product number	Valid from
	rev. no.		rev. no.
VVF45.49	03	VVF45.494	02
VVF45.50	03	VVF45.504	02
VVF45.65	03	VVF45.654	02
VVF45.80	03	VVF45.804	02
VVF45.90	03	VVF45.904	02
VVF45.91	03	VVF45.914	02
VVF45.92	03	VVF45.924	02